Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Isocedrelone

S. Soundarya Devi,^a R. Malathi,^a S. S. Rajan,^a* V. P. Santhanakrishnan^b and S. Narasimhan^b

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bAsthagri Herbal Research Foundation, 7/1 Thirumazhisai Street, Sundaram Colony, East Tambaram, Chennai 600 059. India

Correspondence e-mail: ssrajansai@yahoo.com

Received 18 July 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.059; wR factor = 0.188; data-to-parameter ratio = 12.4.

The title compound (systematic name: 17-furan-3-yl-6,15dihydroxy-4,4,8,10,14-pentamethyl-8,9,10,11,12,14,15,16-octahydro-4*H*-cyclopenta[*a*]phenanthrene-3,7-dione), $C_{26}H_{30}O_5$, is a semi-synthetic derivative of cedrelone, a tetranortriterpenoid isolated from Toona ciliata. Both cedrelone and the title compound show similar antifeedant activity against third instar larvae of Spodoptera litura. The modification of the D ring of the parent compound has altered the conformation of ring C; however, the orientation of the furan ring as well as the conformations of other rings remain the same. The three fused six-membered rings adopt a boat, a halfchair and a chair conformation and the five-membered rings D and E adopt envelope and planar conformations, respectively. A macrocyclic ring motif, $R_7^6(40)$, S(5) and S(7), generated by $C-H\cdots O$ and $O-H\cdots O$ hydrogen bonds, stabilizes the molecules in the crystal structure.

Related literature

Several cedrelone derivatives have been synthesized through classical chemical modifications and the crystal structures of cedrelone (Zeumer et al., 2000) and a few derivatives have been reported. For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Narayanan et al. (1980).

Experimental

Crystal data

C ₂₆ H ₃₀ O ₅	
$M_r = 422.50$	
Orthorhombic, $P2_12_12_1$	
a = 11.639 (4) Å	
b = 13.027 (2) Å	
c = 14.417 (5) Å	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 3810 measured reflections 3557 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	1 restraint
$wR(F^2) = 0.188$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3557 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
287 parameters	

 $V = 2185.9 (11) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-3}$

 $0.23 \times 0.21 \times 0.21$ mm

3 standard reflections

every 120 reflections

intensity decay: 2%

1738 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int}=0.022$

Z = 4

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O6−H6···O7	0.82	2.10	2.573 (4)	117
$O15-H15A\cdots O7$	0.82	1.90	2.687 (4)	162
$C11 - H11A \cdots O3^{i}$	0.97	2.55	3.431 (6)	151
$C11 - H11B \cdots O7^{ii}$	0.97	2.56	3.458 (5)	155

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, -y + 2, $z - \frac{1}{2}$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

SSD thanks the University of Madras for a University Research Fellowship and RM thanks CSIR (India) for a Research Associateship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2029).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Narayanan, C. R., Dhaneshwar, N. N., Tavale, S. S. & Pant, L. M. (1980). Acta
- Cryst. B36, 486-489. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zeumer, B., Zukerman-Schpector, J., Caracelli, I., Castro-Gamboa, I., Das, M. F., Da Silva, G. F., Fernandes, J. B. & Vieira, P. C. (2000). Z. Kristallogr. New Cryst. Struct. 215, 143-145.

Acta Cryst. (2007). E63, o3948 [doi:10.1107/S1600536807042201]

Isocedrelone

S. S. Devi, R. Malathi, S. S. Rajan, V. P. Santhanakrishnan and S. Narasimhan

Comment

An intact limonoid Cedrelone, has been previously isolated from *Toona ciliata* and its three dimensional structure was reported earlier (Zeumer *et al.*, 2000). It possess half the antifeedant activity of the most potent, Azadirachtin–A from *Azadirachta indica*. The title compound, a semisynthetic derivative of cedrelone differs chemically from the parent molecule by the modification of ring *D*. Abstraction of C17 proton has resulted in the shift of C13 methyl group to C14, opening up of epoxide ring between C14—C15, formation of hydroxyl at C15 and the double bond between C13=C17. This modification has altered the ring conformations and the orientation of furan ring with respect to ring *D* is C16—C17—C20—C22 = 164.1 (5)° for (I) and 168.3 (4)° for cedrelone, compared with parent compound (Zeumer *et al.*, 2000);

Ring *A* [Q_T = 0.522 (4) Å, $\varphi_2 = -68.6$ (5)°, $q_2 = 0.515$ (4) Å] is in a boat conformation. The atoms C1 and C10 deviate by 0.165 (4)Å and 0.734 (3)Å from the plane involving the other four atoms of the ring. Ring *B* [Q_T = 0.418 (3) Å, $\varphi_2 = -138.4$ (6)°, $q_2 = 0.331$ (3) Å] adopts a half–chair conformation as in cedrelone (Zeumer *et al.*, 2000). The atoms C8 and C9 deviate from the LSQ–plane of the other four atoms by 0.209 (3)Å and -0.427 (3)Å respectively. Ring *C* takes up a chair conformation [Q_T = 0.586 (4) Å, $\varphi_2 = -4.85(8.12)^\circ$, $q_2 = 0.027$ (4) Å] with atoms C8 and C12 deviating from the plane by 0.717 (3)Å and -0.667 (4)Å respectively from the plane of other four atoms of the ring. It adopts a twist conformation in cedrelone. Rings *D* and *E* are in an envelope [$\varphi_2 = 70.23(1.12)^\circ$, $q_2 = 0.205$ (4)Å for ring *D*] and a planar conformation (Nardelli, 1995) respectively (Cremer & Pople, 1975).

Ring motifs are generated through O—H···O and C—H···O hydrogen bonds in the crystal lattice (Fig 2). Two ring motifs S(5) and S(7) are generated through hydrogen bonds O6—H6···O7 and O15—H15A···O7 respectively. A macrocyclic ring motif R_7^6 [40] (Bernstein *et al.*, 1995) is generated through hydrogen bonds C11—H11A···O3 [2 - x, -1/2 + y, 3/2 - z] and C19—H11B···O7 [3/2 - x, 2 - y, -1/2 + z].

Experimental

To a solution of Cedrelone (40 mg, 0.085 mmol) in acetone (3 ml) 400 mg of the freshly prepared *N*-bromoacetamide resin was added and placed under the microwave with stirring for 3 min. The reaction was monitored by TLC using Ethylacetate and hexane in the ratio 1:1). The resin was then filtered and was washed three times with 2 ml of acetone. The solvent was removed under reduced pressure. The crude product was chromotographed on silica gel (70–325 mesh) using an eluant ethylacetate and hexane, in the increasing order of polarity. Elution of the column using ethylacetate/hexane = 10/90 yielded compound (I).

Refinement

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack parameter (Flack, 1983) led to inconclusive values (Flack & Bernardinelli, 2000) for this parameter

[1(3)]. Therefore, 3557 Friedel equivalents were merged before the final refinement. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of tetranortriterpenoids (Narayanan *et al.*, 1980).

The C—H and CH₂, atoms were constrained to an ideal geometry (CH = 0.98, CH₂ = 0.97, OH = 0.82 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$, but where allowed to rotate freely about the C—C and C—O bonds, respectively. For CH₃ and OH, hydrogen atoms were constrained to ride on their parent atom with $U_{iso}(H) = 1.5U_{eq}$ (parent atom).

Figures

Fig. 1. Molecular structure and atomic numbering schemeof (I) with 30% probability displacement ellipsoids and atomic numbering scheme. The H atoms are presented as a spheres of arbitrary radius.

Fig. 2. A view of the crystal packing of (I) view down 'b' axis with the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.

17-furan-3-yl-6,15-dihydroxy-4,4,8,10,14-pentamethyl-8,9,10,11,12,14,15,16- octahydro-4*H*-cyclopenta[*a*]phenanthrene-3,7-dione

Crystal data	
C ₂₆ H ₃₀ O ₅	$F_{000} = 904$
$M_r = 422.50$	$D_{\rm x} = 1.284 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 25 reflections
a = 11.639 (4) Å	$\theta = 5 - 11^{\circ}$
b = 13.027 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 14.417 (5) Å	T = 293 (2) K
$V = 2185.9 (11) \text{ Å}^3$	Prism, yellow
Z = 4	$0.23\times0.21\times0.21~mm$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{max} = 30.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 16$
ω scans	$k = 0 \rightarrow 18$
Absorption correction: none	$l = -1 \rightarrow 20$
3810 measured reflections	3 standard reflections
3557 independent reflections	every 120 reflections
1738 reflections with $I > 2\sigma(I)$	intensity decay: 2%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.0895P)^2 + 0.3096P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.188$	$(\Delta/\sigma)_{\rm max} = 0.042$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
3557 reflections	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
287 parameters	Extinction correction: none
1 restraint	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional R-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8295 (5)	1.1629 (3)	0.8368 (3)	0.0636 (11)
H1	0.7581	1.1466	0.8118	0.076*
C2	0.8688 (5)	1.2571 (3)	0.8284 (3)	0.0790 (14)

H2	0.8265	1.3061	0.7960	0.095*
C3	0.9800 (6)	1.2848 (4)	0.8704 (4)	0.0847 (16)
C4	1.0118 (4)	1.2324 (3)	0.9612 (3)	0.0623 (11)
C5	0.9509 (3)	1.1291 (3)	0.9719 (3)	0.0502 (9)
C6	0.9440 (3)	1.0809 (3)	1.0537 (3)	0.0537 (9)
C7	0.8920 (3)	0.9804 (3)	1.0695 (2)	0.0497 (9)
C8	0.8527 (3)	0.9158 (3)	0.9891 (2)	0.0428 (8)
C9	0.8120 (3)	0.9916 (3)	0.9116 (2)	0.0427 (8)
Н9	0.7444	1.0262	0.9375	0.051*
C10	0.8975 (3)	1.0802 (3)	0.8861 (2)	0.0486 (9)
C11	0.7683 (4)	0.9354 (3)	0.8260 (3)	0.0570 (10)
H11A	0.8307	0.8966	0.7986	0.068*
H11B	0.7420	0.9851	0.7806	0.068*
C12	0.6694 (4)	0.8622 (3)	0.8501 (3)	0.0641 (11)
H12A	0.6031	0.9010	0.8710	0.077*
H12B	0.6474	0.8230	0.7957	0.077*
C13	0.7087 (3)	0.7923 (3)	0.9242 (3)	0.0499 (9)
C14	0.7492 (3)	0.8424 (3)	1.0148 (2)	0.0464 (8)
C15	0.7747 (4)	0.7430 (3)	1.0737 (3)	0.0588 (10)
H15	0.7050	0.7293	1.1098	0.071*
C16	0.7876 (4)	0.6542 (3)	1.0074 (3)	0.0621 (11)
H16A	0.8680	0.6389	0.9962	0.075*
H16B	0.7499	0.5933	1.0311	0.075*
C17	0.7301 (3)	0.6918 (3)	0.9207 (3)	0.0530 (9)
C18	0.6518 (3)	0.9029 (3)	1.0623 (3)	0.0620 (11)
H18A	0.6801	0.9331	1.1186	0.093*
H18B	0 5894	0.8573	1 0764	0.093*
H18C	0.6253	0.9561	1 0215	0.093*
C19	0.9946 (4)	1.0471 (3)	0.8182 (3)	0.0697 (13)
H19A	0.9612	1.0156	0.7643	0.105*
H19B	1 0444	0 9989	0.8485	0.105*
H19C	1.0380	1 1063	0 7998	0.105*
C20	0 7107 (4)	0.6200 (3)	0.8442(3)	0.0631 (12)
C21	0.7550 (9)	0.5260(3)	0.8367(5)	0.0001(12) 0.128(3)
H21	0.8024	0.4972	0.8817	0.120 (5)
C22	0.6395 (6)	0.6265 (5)	0.7665 (4)	0.107(2)
H22	0.5935	0.6205 (5)	0.7520	0.128*
C23	0.5755	0.5425 (5)	0.7520 0.7167 (4)	0.120 0.116 (2)
H23	0.6059	0.5289	0.6625	0.110 (2)
C28	0.0039	1 3119 (4)	1 0330 (4)	0.0911 (17)
H28A	1.0141	1.3740	1.0330 (4)	0.137*
H28R	0.0883	1.3749	1.0234	0.137*
H28C	0.9883	1.2005	1.0943	0.137*
C20	1.1425(5)	1.3241 1.2162 (4)	0.0664 (5)	0.137
H29A	1.1723 (3)	1.2102 (7)	0.9603	0.1022 (19)
H20R	1.1007	1.2012	0.0003	0.155*
H29C	1 1620	1.1/13	1 0250	0.155*
C30	0.0502(3)	0.8524 (2)	0.0602 (3)	0.155 (10)
	0.3332 (3)	0.0524 (5)	0.9002 (5)	0.0009 (10)
1130A	0.7370	0.0090	0.900/	0.004

H30B	0.9838	0.8108	1.0115	0.084*
H30C	1.0202	0.8981	0.9426	0.084*
O3	1.0399 (5)	1.3534 (3)	0.8388 (3)	0.1323 (18)
O6	0.9912 (3)	1.1237 (3)	1.1320 (2)	0.0848 (10)
H6	0.9856	1.0832	1.1753	0.127*
07	0.8893 (3)	0.9497 (2)	1.15122 (18)	0.0684 (8)
015	0.8667 (3)	0.7449 (3)	1.1382 (2)	0.0868 (10)
H15A	0.8798	0.8044	1.1535	0.130*
O23	0.7255 (6)	0.4771 (4)	0.7596 (4)	0.145 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.094 (3)	0.050 (2)	0.047 (2)	0.004 (2)	0.000(2)	0.0076 (18)
C2	0.129 (4)	0.051 (2)	0.057 (2)	0.009 (3)	-0.008 (3)	0.011 (2)
C3	0.125 (5)	0.057 (3)	0.072 (3)	-0.012 (3)	0.022 (3)	0.001 (2)
C4	0.069 (3)	0.061 (2)	0.057 (2)	-0.012 (2)	0.010(2)	-0.002 (2)
C5	0.054 (2)	0.052 (2)	0.0448 (19)	-0.0050 (18)	0.0080 (17)	-0.0054 (17)
C6	0.058 (2)	0.062 (2)	0.0413 (19)	-0.0113 (19)	-0.0026 (18)	-0.0022 (19)
C7	0.050(2)	0.059 (2)	0.0397 (19)	0.0057 (18)	-0.0008 (17)	0.0058 (17)
C8	0.0473 (18)	0.0443 (17)	0.0366 (17)	0.0033 (16)	0.0003 (16)	0.0054 (15)
C9	0.0503 (18)	0.0411 (17)	0.0367 (17)	0.0062 (16)	-0.0015 (15)	0.0005 (15)
C10	0.064 (2)	0.0459 (18)	0.0356 (17)	0.0067 (18)	0.0051 (18)	0.0027 (16)
C11	0.083 (3)	0.051 (2)	0.0370 (17)	0.004 (2)	-0.012 (2)	0.0045 (17)
C12	0.076 (3)	0.054 (2)	0.062 (2)	-0.004 (2)	-0.031 (2)	0.001 (2)
C13	0.052 (2)	0.053 (2)	0.045 (2)	-0.0036 (17)	-0.0008 (18)	-0.0010 (17)
C14	0.0491 (19)	0.0495 (19)	0.0407 (18)	-0.0018 (17)	-0.0015 (17)	0.0022 (16)
C15	0.065 (2)	0.056 (2)	0.055 (2)	-0.006 (2)	0.003 (2)	0.014 (2)
C16	0.073 (3)	0.048 (2)	0.065 (3)	0.001 (2)	0.005 (2)	0.013 (2)
C17	0.053 (2)	0.049 (2)	0.056 (2)	-0.0058 (17)	0.010 (2)	-0.0003 (18)
C18	0.058 (2)	0.068 (2)	0.060 (2)	-0.005 (2)	0.014 (2)	-0.007 (2)
C19	0.098 (3)	0.060 (2)	0.051 (2)	-0.006 (2)	0.033 (2)	-0.004 (2)
C20	0.079 (3)	0.045 (2)	0.065 (3)	-0.006 (2)	0.020 (2)	-0.002 (2)
C21	0.237 (9)	0.064 (3)	0.083 (4)	0.021 (5)	-0.003 (5)	-0.014 (3)
C22	0.152 (6)	0.089 (4)	0.079 (4)	0.009 (4)	-0.020 (4)	-0.019 (3)
C23	0.191 (7)	0.092 (4)	0.065 (3)	-0.033 (4)	0.014 (4)	-0.042 (3)
C28	0.118 (4)	0.065 (3)	0.090 (4)	-0.024 (3)	0.019 (4)	-0.024 (3)
C29	0.080 (4)	0.091 (4)	0.135 (5)	-0.029 (3)	0.020 (4)	0.002 (4)
C30	0.050(2)	0.055 (2)	0.063 (2)	0.0057 (19)	0.0064 (19)	0.008 (2)
03	0.187 (5)	0.092 (3)	0.118 (3)	-0.064 (3)	0.025 (3)	0.035 (3)
06	0.116 (3)	0.088 (2)	0.0506 (16)	-0.032 (2)	-0.0207 (19)	-0.0003 (16)
07	0.089 (2)	0.0785 (19)	0.0375 (14)	-0.0127 (17)	-0.0066 (14)	0.0097 (13)
015	0.106 (2)	0.076 (2)	0.078 (2)	-0.011 (2)	-0.036 (2)	0.0305 (19)
O23	0.229 (6)	0.085 (3)	0.121 (4)	-0.012 (3)	0.024 (4)	-0.022 (3)

Geometric parameters (Å, °)

C1—C2	1.316 (6)	C15—O15	1.419 (5)
C1—C10	1.514 (5)	C15—C16	1.508 (6)

01 111	0.0200	C15 1115	0.0000
C1—H1	0.9300	CIS—HIS	0.9800
$C_2 = C_3$	1.475 (8)		1.500 (6)
C2—H2	0.9300	CI6—HI6A	0.9700
$C_3 = C_3$	1.222 (6)	C16—H16B	0.9700
C3—C4	1.522 (7)	C1/-C20	1.463 (6)
C4—C28	1.533 (6)	CI8—HI8A	0.9600
C4—C5	1.528 (6)	CI8—HI8B	0.9600
C4—C29	1.537 (7)	C18—H18C	0.9600
C5—C6	1.339 (5)	C19—H19A	0.9600
C5—C10	1.524 (5)	С19—Н19В	0.9600
C6—O6	1.374 (5)	С19—Н19С	0.9600
C6—C7	1.461 (6)	C20—C21	1.334 (8)
С7—07	1.245 (4)	C20—C22	1.396 (7)
С7—С8	1.503 (5)	C21—O23	1.327 (8)
C8—C30	1.546 (5)	C21—H21	0.9300
C8—C9	1.565 (5)	C22—C23	1.311 (7)
C8—C14	1.583 (5)	С22—Н22	0.9300
C9—C11	1.522 (5)	C23—O23	1.399 (9)
C9—C10	1.567 (5)	С23—Н23	0.9300
С9—Н9	0.9800	C28—H28A	0.9600
C10—C19	1.557 (5)	C28—H28B	0.9600
C11—C12	1.534 (6)	C28—H28C	0.9600
C11—H11A	0.9700	С29—Н29А	0.9600
C11—H11B	0.9700	С29—Н29В	0.9600
C12—C13	1.477 (5)	С29—Н29С	0.9600
C12—H12A	0.9700	C30—H30A	0.9600
C12—H12B	0.9700	С30—Н30В	0.9600
C13—C17	1.333 (5)	С30—Н30С	0.9600
C13—C14	1.534 (5)	O6—H6	0.8200
C14—C18	1.542 (5)	O15—H15A	0.8200
C14—C15	1.576 (5)		
C2-C1-C10	121.7 (5)	C15—C14—C8	118.6 (3)
C2—C1—H1	119.1	O15—C15—C16	110.7 (4)
C10-C1-H1	119.1	O15—C15—C14	118.8 (3)
C1—C2—C3	119.7 (5)	C16—C15—C14	107.9 (3)
C1—C2—H2	120.2	O15—C15—H15	106.2
С3—С2—Н2	120.2	С16—С15—Н15	106.2
O3—C3—C2	121.7 (5)	C14—C15—H15	106.2
O3—C3—C4	120.7 (6)	C17—C16—C15	103.5 (3)
C2—C3—C4	117.2 (4)	С17—С16—Н16А	111.1
C3—C4—C28	101.9 (4)	C15—C16—H16A	111.1
C3—C4—C5	111.6 (4)	C17—C16—H16B	111.1
C28—C4—C5	113.0 (3)	C15—C16—H16B	111.1
C3—C4—C29	110.1 (4)	H16A—C16—H16B	109.0
C28—C4—C29	110.6 (4)	C13—C17—C20	128.8 (4)
C5—C4—C29	109.5 (4)	C13—C17—C16	111.9 (4)
C6—C5—C10	119.6 (3)	C20—C17—C16	119.2 (3)
C6—C5—C4	122.0 (4)	C14—C18—H18A	109.5
C10—C5—C4	118.4 (3)	C14—C18—H18B	109.5

C5—C6—O6	120.6 (3)	H18A—C18—H18B	109.5
C5—C6—C7	125.7 (3)	C14—C18—H18C	109.5
O6—C6—C7	113.7 (3)	H18A—C18—H18C	109.5
O7—C7—C6	116.5 (4)	H18B—C18—H18C	109.5
07—C7—C8	122.9 (4)	С10—С19—Н19А	109.5
C6—C7—C8	120.5 (3)	С10—С19—Н19В	109.5
C7—C8—C30	105.2 (3)	H19A—C19—H19B	109.5
C7—C8—C9	106.8 (3)	С10—С19—Н19С	109.5
C30—C8—C9	112.8 (3)	H19A—C19—H19C	109.5
C7—C8—C14	112.9 (3)	H19B—C19—H19C	109.5
C30—C8—C14	110.6 (3)	C21—C20—C22	102.7 (5)
C9—C8—C14	108.5 (3)	C21—C20—C17	126.1 (5)
С11—С9—С8	112.1 (3)	C22—C20—C17	131.1 (4)
C11—C9—C10	112.1 (3)	C20—C21—O23	114.1 (7)
C8—C9—C10	116.1 (3)	C20-C21-H21	122.9
С11—С9—Н9	105.1	O23—C21—H21	122.9
С8—С9—Н9	105.1	C23—C22—C20	110.7 (6)
С10—С9—Н9	105.1	С23—С22—Н22	124.6
C5—C10—C1	107.3 (3)	C20—C22—H22	124.7
C5-C10-C19	109.3 (3)	C22—C23—O23	107.8 (6)
C1C10C19	106.3 (3)	С22—С23—Н23	126.1
C5—C10—C9	112.2 (3)	O23—C23—H23	126.1
C1C10C9	107.6 (3)	C4—C28—H28A	109.5
С19—С10—С9	113.9 (3)	C4—C28—H28B	109.5
C9—C11—C12	111.5 (3)	H28A—C28—H28B	109.5
C9—C11—H11A	109.3	C4—C28—H28C	109.5
C12—C11—H11A	109.3	H28A—C28—H28C	109.5
C9—C11—H11B	109.3	H28B—C28—H28C	109.5
C12—C11—H11B	109.3	С4—С29—Н29А	109.5
H11A—C11—H11B	108.0	С4—С29—Н29В	109.5
C13—C12—C11	108.3 (3)	H29A—C29—H29B	109.5
C13—C12—H12A	110.0	С4—С29—Н29С	109.5
C11—C12—H12A	110.0	H29A—C29—H29C	109.5
C13—C12—H12B	110.0	H29B—C29—H29C	109.5
C11—C12—H12B	110.0	C8—C30—H30A	109.5
H12A—C12—H12B	108.4	C8—C30—H30B	109.5
C17—C13—C12	129.5 (4)	H30A—C30—H30B	109.5
C17—C13—C14	113.1 (4)	C8—C30—H30C	109.5
C12—C13—C14	116.7 (3)	H30A—C30—H30C	109.5
C13—C14—C18	111.7 (3)	H30B—C30—H30C	109.5
C13—C14—C15	99.7 (3)	С6—О6—Н6	109.5
C18—C14—C15	108.6 (3)	C15—O15—H15A	109.5
C13—C14—C8	107.0 (3)	C21—O23—C23	104.4 (5)
C18—C14—C8	110.8 (3)		
C10—C1—C2—C3	-2.1 (7)	C11—C9—C10—C19	-49.2 (4)
C1—C2—C3—O3	152.4 (5)	C8—C9—C10—C19	81.3 (4)
C1—C2—C3—C4	-34.0 (7)	C8—C9—C11—C12	57.4 (4)
O3—C3—C4—C28	77.8 (6)	C10—C9—C11—C12	-170.0 (3)
C2—C3—C4—C28	-95.9 (5)	C9—C11—C12—C13	-54.8 (4)

O3—C3—C4—C5	-161.4 (5)	C11—C12—C13—C17	-110.9 (5)
C2—C3—C4—C5	24.9 (6)	C11—C12—C13—C14	58.4 (5)
O3—C3—C4—C29	-39.6 (7)	C17—C13—C14—C18	-126.8 (4)
C2—C3—C4—C29	146.7 (5)	C12—C13—C14—C18	62.1 (4)
C3—C4—C5—C6	-164.1 (4)	C17—C13—C14—C15	-12.2 (4)
C28—C4—C5—C6	-50.0 (6)	C12—C13—C14—C15	176.7 (3)
C29—C4—C5—C6	73.7 (5)	C17—C13—C14—C8	111.8 (4)
C3—C4—C5—C10	16.3 (5)	C12—C13—C14—C8	-59.2 (4)
C28—C4—C5—C10	130.4 (4)	C7—C8—C14—C13	172.8 (3)
C29—C4—C5—C10	-105.9 (5)	C30-C8-C14-C13	-69.6 (4)
C10—C5—C6—O6	-179.8 (4)	C9—C8—C14—C13	54.6 (4)
C4—C5—C6—O6	0.6 (6)	C7—C8—C14—C18	50.8 (4)
C10—C5—C6—C7	2.4 (6)	C30-C8-C14-C18	168.4 (3)
C4—C5—C6—C7	-177.2 (4)	C9—C8—C14—C18	-67.3 (4)
C5—C6—C7—O7	-177.1 (4)	C7—C8—C14—C15	-75.7 (4)
O6—C6—C7—O7	4.9 (5)	C30-C8-C14-C15	41.9 (4)
C5—C6—C7—C8	7.4 (6)	C9—C8—C14—C15	166.1 (3)
O6—C6—C7—C8	-170.6 (4)	C13—C14—C15—O15	146.0 (4)
O7—C7—C8—C30	-87.2 (4)	C18—C14—C15—O15	-97.0 (4)
C6—C7—C8—C30	88.0 (4)	C8—C14—C15—O15	30.6 (5)
O7—C7—C8—C9	152.7 (4)	C13-C14-C15-C16	19.1 (4)
C6—C7—C8—C9	-32.1 (4)	C18-C14-C15-C16	136.1 (3)
O7—C7—C8—C14	33.5 (5)	C8-C14-C15-C16	-96.3 (4)
C6—C7—C8—C14	-151.3 (3)	O15-C15-C16-C17	-150.9 (3)
C7—C8—C9—C11	-179.3 (3)	C14-C15-C16-C17	-19.4 (4)
C30—C8—C9—C11	65.6 (4)	C12-C13-C17-C20	-6.3 (7)
C14—C8—C9—C11	-57.3 (4)	C14—C13—C17—C20	-175.9 (4)
C7—C8—C9—C10	50.1 (4)	C12-C13-C17-C16	170.2 (4)
C30-C8-C9-C10	-65.0 (4)	C14—C13—C17—C16	0.5 (5)
C14—C8—C9—C10	172.1 (3)	C15-C16-C17-C13	12.1 (5)
C6-C5-C10-C1	133.3 (4)	C15-C16-C17-C20	-171.1 (3)
C4—C5—C10—C1	-47.0 (5)	C13—C17—C20—C21	164.9 (6)
C6-C5-C10-C19	-111.8 (4)	C16-C17-C20-C21	-11.3 (8)
C4—C5—C10—C19	67.8 (4)	C13—C17—C20—C22	-19.7 (8)
C6—C5—C10—C9	15.4 (5)	C16—C17—C20—C22	164.1 (5)
C4—C5—C10—C9	-164.9 (3)	C22—C20—C21—O23	4.7 (8)
C2-C1-C10-C5	41.0 (5)	C17—C20—C21—O23	-178.8 (5)
C2-C1-C10-C19	-75.9 (5)	C21—C20—C22—C23	-2.0 (8)
C2—C1—C10—C9	161.8 (4)	C17—C20—C22—C23	-178.2 (5)
C11—C9—C10—C5	-174.0 (3)	C20—C22—C23—O23	-1.1 (8)
C8—C9—C10—C5	-43.4 (4)	C20—C21—O23—C23	-5.5 (9)
C11—C9—C10—C1	68.3 (4)	C22—C23—O23—C21	3.8 (8)
C8—C9—C10—C1	-161.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O6—H6…O7	0.82	2.10	2.573 (4)	117
O15—H15A…O7	0.82	1.90	2.687 (4)	162

C11—H11A···O3 ⁱ	0.97	2.55	3.431 (6)	151	
C11—H11B···O7 ⁱⁱ	0.97	2.56	3.458 (5)	155	
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+3/2$; (ii) $-x+3/2$, $-y+2$, $z-1/2$.					

Fig. 1

Fig. 2